Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Med Mycol Case Rep ; 42: 100614, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38022892

RESUMO

Fungemia negatively impacts patient outcomes, current diagnostics lack sensitivity to identify emerging rare mycoses, and fungal infections are increasing in prevalence, variety, and resistance. We report a case of Wickerhamomyces anomalus in an immunocompromised neonate in which FcMBL bead-based matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) resulted in species identification roughly 30 hours before standard pathogen identification methods. Deploying FcMBL bead-based MALDI-TOF MS may improve the speed and accuracy of identification, and therefore treatment, of rare pathogens.

2.
PLoS One ; 17(11): e0276777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36413530

RESUMO

Rapid identification of potentially life-threatening blood stream infections (BSI) improves clinical outcomes, yet conventional blood culture (BC) identification methods require ~24-72 hours of liquid culture, plus 24-48 hours to generate single colonies on solid media suitable for identification by mass spectrometry (MS). Newer rapid centrifugation techniques, such as the Bruker MBT-Sepsityper® IVD, replace culturing on solid media and expedite the diagnosis of BCs but frequently demonstrate reduced sensitivity for identifying clinically significant Gram-positive bacterial or fungal infections. This study introduces a protocol that utilises the broad-range binding properties of an engineered version of mannose-binding lectin linked to the Fc portion of immunoglobulin (FcMBL) to capture and enrich pathogens combined with matrix-assisted laser desorption-ionisation time-of-flight (MALDI-TOF) MS for enhanced infection identification in BCs. The FcMBL method identified 94.1% (64 of 68) of clinical BCs processed, with a high sensitivity for both Gram-negative and Gram-positive bacteria (94.7 and 93.2%, respectively). The FcMBL method identified more patient positive BCs than the Sepsityper® (25 of 25 vs 17 of 25), notably with 100% (3/3) sensitivity for clinical candidemia, compared to only 33% (1/3) for the Sepsityper®. Additionally, during inoculation experiments, the FcMBL method demonstrated a greater sensitivity, identifying 100% (24/24) of candida to genus level and 9/24 (37.5%) top species level compared to 70.8% (17/24) to genus and 6/24 to species (25%) using the Sepsityper®. This study demonstrates that capture and enrichment of samples using magnetic FcMBL-conjugated beads is superior to rapid centrifugation methods for identification of BCs by MALDI-TOF MS. Deploying the FcMBL method therefore offers potential clinical benefits in sensitivity and reduced turnaround times for BC diagnosis compared to the standard Sepsityper® kit, especially for fungal diagnosis.


Assuntos
Bacteriemia , Sepse , Humanos , Criança , Hemocultura , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Técnicas Bacteriológicas/métodos , Bacteriemia/diagnóstico , Bacteriemia/microbiologia , Bactérias Gram-Positivas , Fenômenos Magnéticos
3.
Adv Sci (Weinh) ; 9(26): e2200222, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35706367

RESUMO

Current therapeutic strategies against bacterial infections focus on reduction of pathogen load using antibiotics; however, stimulation of host tolerance to infection in the presence of pathogens might offer an alternative approach. Computational transcriptomics and Xenopus laevis embryos are used to discover infection response pathways, identify potential tolerance inducer drugs, and validate their ability to induce broad tolerance. Xenopus exhibits natural tolerance to Acinetobacter baumanii, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus pneumoniae bacteria, whereas Aeromonas hydrophila and Pseudomonas aeruginosa produce lethal infections. Transcriptional profiling leads to definition of a 20-gene signature that discriminates between tolerant and susceptible states, as well as identification of a more active tolerance response to gram negative compared to gram positive bacteria. Gene pathways associated with active tolerance in Xenopus, including some involved in metal ion binding and hypoxia, are found to be conserved across species, including mammals, and administration of a metal chelator (deferoxamine) or a HIF-1α agonist (1,4-DPCA) in embryos infected with lethal A. hydrophila increased survival despite high pathogen load. These data demonstrate the value of combining the Xenopus embryo infection model with computational multiomics analyses for mechanistic discovery and drug repurposing to induce host tolerance to bacterial infections.


Assuntos
Bactérias Gram-Positivas , Infecções Estafilocócicas , Animais , Tolerância Imunológica , Klebsiella pneumoniae , Mamíferos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico
4.
J Am Assoc Lab Anim Sci ; 61(1): 21-30, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34903312

RESUMO

Swine are widely used in biomedical research, translational research, xenotransplantation, and agriculture. For these uses, physiologic reference intervals are extremely important for assessing the health status of the swine and diagnosing disease. However, few biochemical and hematologic reference intervals that comply with guidelines from the Clinical and Laboratory Standards Institute and the American Society for Veterinary Clinical Pathology are available for swine. These guidelines state that reference intervals should be determined by using 120 subjects or more. The aim of this study was to generate hematologic and biochemical reference intervals for female, juvenile Yorkshire swine (Sus scrofa domesticus) and to compare these values with those for humans and baboons (Papio hamadryas). Blood samples were collected from the femoral artery or vein of female, juvenile Yorkshire swine, and standard hematologic and biochemical parameters were analyzed in multiple studies. Hematologic and biochemical reference intervals were calculated for arterial blood samples from Yorkshire swine (n = 121 to 124); human and baboon reference intervals were obtained from the literature. Arterial reference intervals for Yorkshire swine differed significantly from those for humans and baboons in all commonly measured parameters except platelet count, which did not differ significantly from the human value, and glucose, which was not significantly different from the baboon value. These data provide valuable information for investigators using female, juvenile Yorkshire swine for biomedical re- search, as disease models, and in xenotransplantation studies as well as useful physiologic information for veterinarians and livestock producers. Our findings highlight the need for caution when comparing data and study outcomes between species.


Assuntos
Testes Hematológicos , Animais , Feminino , Testes Hematológicos/veterinária , Padrões de Referência , Valores de Referência , Suínos
5.
Nat Biomed Eng ; 6(1): 8-18, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34239117

RESUMO

Most bacterial vaccines work for a subset of bacterial strains or require the modification of the antigen or isolation of the pathogen before vaccine development. Here we report injectable biomaterial vaccines that trigger potent humoral and T-cell responses to bacterial antigens by recruiting, reprogramming and releasing dendritic cells. The vaccines are assembled from regulatorily approved products and consist of a scaffold with absorbed granulocyte-macrophage colony-stimulating factor and CpG-rich oligonucleotides incorporating superparamagnetic microbeads coated with the broad-spectrum opsonin Fc-mannose-binding lectin for the magnetic capture of pathogen-associated molecular patterns from inactivated bacterial-cell-wall lysates. The vaccines protect mice against skin infection with methicillin-resistant Staphylococcus aureus, mice and pigs against septic shock from a lethal Escherichia coli challenge and, when loaded with pathogen-associated molecular patterns isolated from infected animals, uninfected animals against a challenge with different E. coli serotypes. The strong immunogenicity and low incidence of adverse events, a modular manufacturing process, and the use of components compatible with current good manufacturing practice could make this vaccine technology suitable for responding to bacterial pandemics and biothreats.


Assuntos
Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Choque Séptico , Vacinas , Animais , Materiais Biocompatíveis , Escherichia coli , Camundongos , Moléculas com Motivos Associados a Patógenos , Suínos
6.
Front Cell Infect Microbiol ; 11: 638014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777849

RESUMO

Commensal bacteria within the gut microbiome contribute to development of host tolerance to infection, however, identifying specific microbes responsible for this response is difficult. Here we describe methods for developing microfluidic organ-on-a-chip models of small and large intestine lined with epithelial cells isolated from duodenal, jejunal, ileal, or colon organoids derived from wild type or transgenic mice. To focus on host-microbiome interactions, we carried out studies with the mouse Colon Chip and demonstrated that it can support co-culture with living gut microbiome and enable assessment of effects on epithelial adhesion, tight junctions, barrier function, mucus production, and cytokine release. Moreover, infection of the Colon Chips with the pathogenic bacterium, Salmonella typhimurium, resulted in epithelial detachment, decreased tight junction staining, and increased release of chemokines (CXCL1, CXCL2, and CCL20) that closely mimicked changes previously seen in mice. Symbiosis between microbiome bacteria and the intestinal epithelium was also recapitulated by populating Colon Chips with complex living mouse or human microbiome. By taking advantage of differences in the composition between complex microbiome samples cultured on each chip using 16s sequencing, we were able to identify Enterococcus faecium as a positive contributor to host tolerance, confirming past findings obtained in mouse experiments. Thus, mouse Intestine Chips may represent new experimental in vitro platforms for identifying particular bacterial strains that modulate host response to pathogens, as well as for investigating the cellular and molecular basis of host-microbe interactions.


Assuntos
Colo , Simbiose , Animais , Bactérias , Mucosa Intestinal , Camundongos , Tecnologia
7.
F1000Res ; 8: 108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275563

RESUMO

Background: Fc-mannose-binding lectin (FcMBL), an engineered version of the blood opsonin MBL that contains the carbohydrate recognition domain (CRD) and flexible neck regions of MBL fused to the Fc portion of human IgG1, has been shown to bind various microbes and pathogen-associated molecular patterns (PAMPs). FcMBL has also been used to create an enzyme-linked lectin sorbent assay (ELLecSA) for use as a rapid (<1 h) diagnostic of bloodstream infections. Methods: Here we extended this work by using the ELLecSA to test FcMBL's ability to bind to more than 190 different isolates from over 95 different pathogen species. Results: FcMBL bound to 85% of the isolates and 97 of the 112 (87%) different pathogen species tested, including bacteria, fungi, viral antigens and parasites. FcMBL also bound to PAMPs including, lipopolysaccharide endotoxin (LPS) and lipoteichoic acid (LTA) from Gram-negative and Gram-positive bacteria, as well as lipoarabinomannan (LAM) and phosphatidylinositol mannoside 6 (PIM 6) from Mycobacterium tuberculosis. Conclusions: The efficiency of pathogen detection and variation between binding of different strains of the same species could be improved by treating the bacteria with antibiotics, or mechanical disruption using a bead mill, prior to FcMBL capture to reveal previously concealed binding sites within the bacterial cell wall. As FcMBL can bind to pathogens and PAMPs in urine as well as blood, its broad-binding capability could be leveraged to develop a variety of clinically relevant technologies, including infectious disease diagnostics, therapeutics, and vaccines.


Assuntos
Antibacterianos , Bactérias , Lectina de Ligação a Manose , Fungos , Humanos , Lectinas Tipo C , Manose/metabolismo , Lectina de Ligação a Manose/farmacologia
8.
Front Immunol ; 10: 1005, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139182

RESUMO

Background: Mannose-binding lectin (MBL) is an innate immune protein with strong biologic plausibility for protecting against influenza virus-related sepsis and bacterial co-infection. In an autopsy cohort of 105 influenza-infected young people, carriage of the deleterious MBL gene MBL2_Gly54Asp("B") mutation was identified in 5 of 8 individuals that died from influenza-methicillin-resistant Staphylococcus aureus (MRSA) co-infection. We evaluated MBL2 variants known to influence MBL levels with pediatric influenza-related critical illness susceptibility and/or severity including with bacterial co-infections. Methods: We enrolled children and adolescents with laboratory-confirmed influenza infection across 38 pediatric intensive care units from November 2008 to June 2016. We sequenced MBL2 "low-producer" variants rs11003125("H/L"), rs7096206("Y/X"), rs1800450Gly54Asp("B"), rs1800451Gly57Glu("C"), rs5030737Arg52Cys("D") in patients and biologic parents. We measured serum levels and compared complement activity in low-producing homozygotes ("B/B," "C/C") to HYA/HYA controls. We used a population control of 1,142 healthy children and also analyzed family trios (PBAT/HBAT) to evaluate disease susceptibility, and nested case-control analyses to evaluate severity. Results: We genotyped 420 patients with confirmed influenza-related sepsis: 159 (38%) had acute lung injury (ALI), 165 (39%) septic shock, and 30 (7%) died. Although bacterial co-infection was diagnosed in 133 patients (32%), only MRSA co-infection (n = 33, 8% overall) was associated with death (p < 0.0001), present in 11 of 30 children that died (37%). MBL2 variants predicted serum levels and complement activation as expected. We found no association between influenza-related critical illness susceptibility and MBL2 variants using family trios (633 biologic parents) or compared to population controls. MBL2 variants were not associated with admission illness severity, septic shock, ALI, or bacterial co-infection diagnosis. Carriage of low-MBL producing MBL2 variants was not a risk factor for mortality, but children that died did have higher carriage of one or more B alleles (OR 2.3; p = 0.007), including 7 of 11 with influenza MRSA-related death (vs. 2 of 22 survivors: OR 14.5, p = 0.0002). Conclusions:MBL2 variants that decrease MBL levels were not associated with susceptibility to pediatric influenza-related critical illness or with multiple measures of critical illness severity. We confirmed a prior report of higher B allele carriage in a relatively small number of young individuals with influenza-MRSA associated death.


Assuntos
Coinfecção , Predisposição Genética para Doença , Vírus da Influenza A , Influenza Humana , Lectina de Ligação a Manose , Staphylococcus aureus Resistente à Meticilina , Mutação de Sentido Incorreto , Infecções Estafilocócicas , Adolescente , Substituição de Aminoácidos , Criança , Pré-Escolar , Coinfecção/sangue , Coinfecção/genética , Coinfecção/imunologia , Coinfecção/mortalidade , Estado Terminal , Feminino , Humanos , Lactente , Vírus da Influenza A/imunologia , Vírus da Influenza A/metabolismo , Influenza Humana/sangue , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/mortalidade , Masculino , Lectina de Ligação a Manose/sangue , Lectina de Ligação a Manose/genética , Lectina de Ligação a Manose/imunologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Staphylococcus aureus Resistente à Meticilina/metabolismo , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/mortalidade
9.
Microbiome ; 7(1): 43, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30890187

RESUMO

BACKGROUND: Species-specific differences in tolerance to infection are exemplified by the high susceptibility of humans to enterohemorrhagic Escherichia coli (EHEC) infection, whereas mice are relatively resistant to this pathogen. This intrinsic species-specific difference in EHEC infection limits the translation of murine research to human. Furthermore, studying the mechanisms underlying this differential susceptibility is a difficult problem due to complex in vivo interactions between the host, pathogen, and disparate commensal microbial communities. RESULTS: We utilize organ-on-a-chip (Organ Chip) microfluidic culture technology to model damage of the human colonic epithelium induced by EHEC infection, and show that epithelial injury is greater when exposed to metabolites derived from the human gut microbiome compared to mouse. Using a multi-omics approach, we discovered four human microbiome metabolites-4-methyl benzoic acid, 3,4-dimethylbenzoic acid, hexanoic acid, and heptanoic acid-that are sufficient to mediate this effect. The active human microbiome metabolites preferentially induce expression of flagellin, a bacterial protein associated with motility of EHEC and increased epithelial injury. Thus, the decreased tolerance to infection observed in humans versus other species may be due in part to the presence of compounds produced by the human intestinal microbiome that actively promote bacterial pathogenicity. CONCLUSION: Organ-on-chip technology allowed the identification of specific human microbiome metabolites modulating EHEC pathogenesis. These identified metabolites are sufficient to increase susceptibility to EHEC in our human Colon Chip model and they contribute to species-specific tolerance. This work suggests that higher concentrations of these metabolites could be the reason for higher susceptibility to EHEC infection in certain human populations, such as children. Furthermore, this research lays the foundation for therapeutic-modulation of microbe products in order to prevent and treat human bacterial infection.


Assuntos
Bactérias/metabolismo , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/patologia , Intestinos/citologia , Técnicas de Cultura de Órgãos/métodos , Animais , Benzoatos/farmacologia , Caproatos/farmacologia , Células Cultivadas , Escherichia coli Êntero-Hemorrágica/metabolismo , Infecções por Escherichia coli/microbiologia , Feminino , Microbioma Gastrointestinal , Ácidos Heptanoicos/farmacologia , Humanos , Intestinos/microbiologia , Masculino , Camundongos , Procedimentos Analíticos em Microchip , Especificidade da Espécie
10.
ACS Biomater Sci Eng ; 5(2): 420-424, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405807

RESUMO

Localized infections caused by biofilm formation on dentures pose a serious health risk for patients, especially the elderly, as they can lead to complications such as pneumonia. Daily enzymatic denture cleaners do not fully prevent biofilm formation on dentures. Here we developed a rapid coating process to apply a liquid repellent surface to dentures in ∼5 min and demonstrated a significant 225-fold reduction of Candida albicans adhesion over 6 days, compared to uncoated dentures. This rapid coating process could be applied to dentures and other dental devices chair-side and allow the research community to quickly and easily generate ominphobic surfaces.

11.
Adv Biosyst ; 1(7): e1700094, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32646174

RESUMO

Tumor cells circulating throughout the body have shown great potential for providing new diagnostic or therapeutic strategies for treating cancer patients. However, isolating circulating tumor cells (CTCs) is still challenging due to the lack of broad spectrum reagents that bind specifically to these cells. This study shows that an engineered human blood opsonin that mimics the innate immune mechanism for opsonizing complex mannan carbohydrates, Fc-mannose binding lectin (FcMBL), exhibits a broad spectrum of CTC binding activity. Using FcMBL-coated magnetic beads, this study is able to specifically capture and isolate a broad range of tumor cells spiked into buffer or blood. FcMBL is bound preferentially to human and mouse breast cancer cells relative to normal breast epithelium, and this study demonstrates the capture of seven different types of cancer cells with greater than 90% capture efficiency, whereas two of these same cancer cells bound poorly to anti epithelial cell adhesion molecule antibodies. It is also confirmed that FcMBL-coated magnetic beads can be used to capture CTCs from the blood of mice bearing metastatic tumors. The FcMBL capture technology may therefore provide a new tool for harvesting a broad range of CTCs with high efficiency as it targets tumor cell specific surface markers that are expressed across diverse cell types and retained throughout the metastatic process.

12.
EBioMedicine ; 9: 217-227, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27333027

RESUMO

BACKGROUND: Blood cultures, and molecular diagnostic tests that directly detect pathogen DNA in blood, fail to detect bloodstream infections in most infected patients. Thus, there is a need for a rapid test that can diagnose the presence of infection to triage patients, guide therapy, and decrease the incidence of sepsis. METHODS: An Enzyme-Linked Lectin-Sorbent Assay (ELLecSA) that uses magnetic microbeads coated with an engineered version of the human opsonin, Mannose Binding Lectin, containing the Fc immunoglobulin domain linked to its carbohydrate recognition domain (FcMBL) was developed to quantify pathogen-associated molecular patterns (PAMPs) in whole blood. This assay was tested in rats and pigs to explore whether it can detect infections and monitor disease progression, and in prospectively enrolled, emergency room patients with suspected sepsis. These results were also compared with data obtained from non-infected patients with or without traumatic injuries. RESULTS: The FcMBL ELLecSA was able to detect PAMPS present on, or released by, 85% of clinical isolates representing 47 of 55 different pathogen species, including the most common causes of sepsis. The PAMP assay rapidly (<1h) detected the presence of active infection in animals, even when blood cultures were negative and bacteriocidal antibiotics were administered. In patients with suspected sepsis, the FcMBL ELLecSA detected infection in 55 of 67 patients with high sensitivity (>81%), specificity (>89%), and diagnostic accuracy of 0·87. It also distinguished infection from trauma-related inflammation in the same patient cohorts with a higher specificity than the clinical sepsis biomarker, C-reactive Protein. CONCLUSION: The FcMBL ELLecSA-based PAMP assay offers a rapid, simple, sensitive and specific method for diagnosing infections, even when blood cultures are negative and antibiotic therapy has been initiated. It may help to triage patients with suspected systemic infections, and serve as a companion diagnostic to guide administration of emerging dialysis-like sepsis therapies.


Assuntos
Bactérias/metabolismo , Imunoensaio , Moléculas com Motivos Associados a Patógenos/sangue , Sepse/diagnóstico , Idoso , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Área Sob a Curva , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Proteína C-Reativa/análise , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Feminino , Humanos , Lectinas/química , Lectinas/metabolismo , Lipopolissacarídeos/metabolismo , Masculino , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/metabolismo , Pessoa de Meia-Idade , Curva ROC , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Sepse/tratamento farmacológico , Suínos
13.
Mol Med ; 22: 22-31, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26772775

RESUMO

Infusion of the heme-binding protein hemopexin has been proposed as a novel approach to decrease heme-induced inflammation in settings of red blood cell breakdown, but questions have been raised as to possible side effects related to protease activity and inhibition of chemotaxis. We evaluated protease activity and effects on chemotaxis of purified plasma hemopexin obtained from multiple sources as well as a novel recombinant fusion protein Fc-hemopexin. Amidolytic assay was performed to measure the protease activity of several plasma-derived hemopexin and recombinant Fc-hemopexin. Hemopexin was added to the human monocyte culture in the presence of lipopolysaccharides (LPS), and also injected into mice intravenously (i.v.) 30 min before inducing neutrophil migration via intraperitoneal (i.p.) injection of thioglycolate. Control groups received the same amount of albumin. Protease activity varied widely between hemopexins. Recombinant Fc-hemopexin bound heme, inhibited the synergy of heme with LPS on tumor necrosis factor (TNF) production from monocytes, and had minor but detectable protease activity. There was no effect of any hemopexin preparation on chemotaxis, and purified hemopexin did not alter the migration of neutrophils into the peritoneal cavity of mice. Heme and LPS synergistically induced the release of LTB4 from human monocytes, and hemopexin blocked this release, as well as chemotaxis of neutrophils in response to activated monocyte supernatants. These results suggest that hemopexin does not directly affect chemotaxis through protease activity, but may decrease heme-driven chemotaxis and secondary inflammation by attenuating the induction of chemoattractants from monocytes. This property could be beneficial in some settings to control potentially damaging inflammation induced by heme.

14.
Small ; 11(42): 5657-66, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26389806

RESUMO

Magnetic nanoparticles have been employed to capture pathogens for many biological applications; however, optimal particle sizes have been determined empirically in specific capturing protocols. Here, a theoretical model that simulates capture of bacteria is described and used to calculate bacterial collision frequencies and magnetophoretic properties for a range of particle sizes. The model predicts that particles with a diameter of 460 nm should produce optimal separation of bacteria in buffer flowing at 1 L h(-1) . Validating the predictive power of the model, Staphylococcus aureus is separated from buffer and blood flowing through magnetic capture devices using six different sizes of magnetic particles. Experimental magnetic separation in buffer conditions confirms that particles with a diameter closest to the predicted optimal particle size provide the most effective capture. Modeling the capturing process in plasma and blood by introducing empirical constants (ce ), which integrate the interfering effects of biological components on the binding kinetics of magnetic beads to bacteria, smaller beads with 50 nm diameters are predicted that exhibit maximum magnetic separation of bacteria from blood and experimentally validated this trend. The predictive power of the model suggests its utility for the future design of magnetic separation for diagnostic and therapeutic applications.


Assuntos
Patógenos Transmitidos pelo Sangue/isolamento & purificação , Separação Celular/normas , Citometria de Fluxo/normas , Nanopartículas de Magnetita , Modelos Teóricos , Esterilização/métodos , Calibragem , Separação Celular/instrumentação , Separação Celular/métodos , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Humanos , Dispositivos Lab-On-A-Chip , Nanopartículas de Magnetita/normas , Técnicas Microbiológicas/métodos , Staphylococcus aureus/isolamento & purificação , Esterilização/instrumentação
15.
Biomaterials ; 67: 382-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26253638

RESUMO

Here we describe development of an extracorporeal hemoadsorption device for sepsis therapy that employs commercially available polysulfone or polyethersulfone hollow fiber filters similar to those used clinically for hemodialysis, covalently coated with a genetically engineered form of the human opsonin Mannose Binding Lectin linked to an Fc domain (FcMBL) that can cleanse a broad range of pathogens and endotoxin from flowing blood without having to first determine their identity. When tested with human whole blood in vitro, the FcMBL hemoadsorption filter (FcMBL-HF) produced efficient (90-99%) removal of Gram negative (Escherichia coli) and positive (Staphylococcus aureus) bacteria, fungi (Candida albicans) and lipopolysaccharide (LPS)-endotoxin. When tested in rats, extracorporeal therapy with the FcMBL-HF device reduced circulating pathogen and endotoxin levels by more than 99%, and prevented pathogen engraftment and inflammatory cell recruitment in the spleen, lung, liver and kidney when compared to controls. Studies in rats revealed that treatment with bacteriocidal antibiotics resulted in a major increase in the release of microbial fragments or 'pathogen-associated molecular patterns' (PAMPs) in vivo, and that these PAMPs were efficiently removed from blood within 2 h using the FcMBL-HF; in contrast, they remained at high levels in animals treated with antibiotics alone. Importantly, cleansing of PAMPs from the blood of antibiotic-treated animals with the FcMBL-hemoadsorbent device resulted in reduced organ pathogen and endotoxin loads, suppressed inflammatory responses, and resulted in more stable vital signs compared to treatment with antibiotics alone. As PAMPs trigger the cytokine cascades that lead to development of systemic inflammatory response syndrome and contribute to septic shock and death, co-administration of FcMBL-hemoadsorption with antibiotics could offer a more effective approach to sepsis therapy.


Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Circulação Extracorpórea , Hemofiltração , Proteínas Opsonizantes/uso terapêutico , Adsorção , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Lipopolissacarídeos , Masculino , Ratos Wistar
16.
Nat Biotechnol ; 32(11): 1134-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25306244

RESUMO

Thrombosis and biofouling of extracorporeal circuits and indwelling medical devices cause significant morbidity and mortality worldwide. We apply a bioinspired, omniphobic coating to tubing and catheters and show that it completely repels blood and suppresses biofilm formation. The coating is a covalently tethered, flexible molecular layer of perfluorocarbon, which holds a thin liquid film of medical-grade perfluorocarbon on the surface. This coating prevents fibrin attachment, reduces platelet adhesion and activation, suppresses biofilm formation and is stable under blood flow in vitro. Surface-coated medical-grade tubing and catheters, assembled into arteriovenous shunts and implanted in pigs, remain patent for at least 8 h without anticoagulation. This surface-coating technology could reduce the use of anticoagulants in patients and help to prevent thrombotic occlusion and biofouling of medical devices.


Assuntos
Incrustação Biológica/prevenção & controle , Materiais Revestidos Biocompatíveis/uso terapêutico , Trombose/prevenção & controle , Animais , Biofilmes/efeitos dos fármacos , Cateteres/microbiologia , Equipamentos e Provisões/microbiologia , Humanos , Propriedades de Superfície , Suínos
17.
Nat Med ; 20(10): 1211-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25216635

RESUMO

Here we describe a blood-cleansing device for sepsis therapy inspired by the spleen, which can continuously remove pathogens and toxins from blood without first identifying the infectious agent. Blood flowing from an infected individual is mixed with magnetic nanobeads coated with an engineered human opsonin--mannose-binding lectin (MBL)--that captures a broad range of pathogens and toxins without activating complement factors or coagulation. Magnets pull the opsonin-bound pathogens and toxins from the blood; the cleansed blood is then returned back to the individual. The biospleen efficiently removes multiple Gram-negative and Gram-positive bacteria, fungi and endotoxins from whole human blood flowing through a single biospleen unit at up to 1.25 liters per h in vitro. In rats infected with Staphylococcus aureus or Escherichia coli, the biospleen cleared >90% of bacteria from blood, reduced pathogen and immune cell infiltration in multiple organs and decreased inflammatory cytokine levels. In a model of endotoxemic shock, the biospleen increased survival rates after a 5-h treatment.


Assuntos
Órgãos Artificiais , Circulação Extracorpórea/instrumentação , Sepse/sangue , Sepse/terapia , Baço , Animais , Engenharia Biomédica , Materiais Biomiméticos , Endotoxinas/sangue , Endotoxinas/isolamento & purificação , Desenho de Equipamento , Escherichia coli/isolamento & purificação , Humanos , Magnetismo , Masculino , Lectina de Ligação a Manose/genética , Técnicas Analíticas Microfluídicas , Dados de Sequência Molecular , Proteínas Opsonizantes/genética , Ratos , Ratos Wistar , Sepse/microbiologia , Staphylococcus aureus/isolamento & purificação
18.
Proc Natl Acad Sci U S A ; 111(31): 11293-8, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25053808

RESUMO

Microfluidic water-in-oil droplets that serve as separate, chemically isolated compartments can be applied for single-cell analysis; however, to investigate encapsulated cells effectively over prolonged time periods, an array of droplets must remain stationary on a versatile substrate for optimal cell compatibility. We present here a platform of unique geometry and substrate versatility that generates a stationary nanodroplet array by using wells branching off a main microfluidic channel. These droplets are confined by multiple sides of a nanowell and are in direct contact with a biocompatible substrate of choice. The device is operated by a unique and reversed loading procedure that eliminates the need for fine pressure control or external tubing. Fluorocarbon oil isolates the droplets and provides soluble oxygen for the cells. By using this approach, the metabolic activity of single adherent cells was monitored continuously over time, and the concentration of viable pathogens in blood-derived samples was determined directly by measuring the number of colony-formed droplets. The method is simple to operate, requires a few microliters of reagent volume, is portable, is reusable, and allows for cell retrieval. This technology may be particularly useful for multiplexed assays for which prolonged and simultaneous visual inspection of many isolated single adherent or nonadherent cells is required.


Assuntos
Fibroblastos/citologia , Técnicas Analíticas Microfluídicas/métodos , Análise de Célula Única/métodos , Animais , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Contagem de Colônia Microbiana , Humanos , Leucemia/patologia , Camundongos , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Célula Única/instrumentação , Staphylococcus aureus/citologia , Staphylococcus aureus/crescimento & desenvolvimento
19.
Lab Chip ; 14(1): 182-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24169822

RESUMO

Sepsis diagnosis requires development of methods to identify rare pathogen cells in small samples of human blood. Magnetic beads functionalized with pathogen-binding ligands have been used to rapidly isolate microbes from blood; however, it is commonly difficult to optically detect the captured species because the excess numbers of beads required for pathogen binding physically interfere with light transmission after they have been concentrated. Here we describe a microdevice that uses microfluidics combined with optimized magnetic field concentrators and magnetic beads coated with a generic blood opsonin to efficiently capture unknown blood pathogens and spread them into a thin layer suitable for automated optical detection. Using this device, we have been able to detect fungal pathogens in less than three hours after sample collection compared to days with current technology, and with an extremely high sensitivity (<1 cell mL(-1) of human blood).


Assuntos
Separação Imunomagnética/métodos , Magnetismo , Técnicas Analíticas Microfluídicas/métodos , Candida albicans/isolamento & purificação , Candida albicans/metabolismo , Humanos , Separação Imunomagnética/instrumentação , Ligantes , Técnicas Analíticas Microfluídicas/instrumentação , Sepse/diagnóstico , Sepse/microbiologia
20.
Nat Biotechnol ; 28(12): 1295-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21113165

RESUMO

Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.


Assuntos
DNA/química , Genes Sintéticos , Técnicas de Amplificação de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Biologia Sintética/métodos , Clonagem Molecular/métodos , DNA/síntese química , Humanos , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...